
Journal of Applied Mechanics and Technical Physics, Vol. 35, No 2, 1994 

N O N S T A T I O N A R Y  P R O B L E M S  O F  T H E  Q U A S I S T A T I C  

T H E O R Y  O F  A H A R D E N I N G  E L A S T I C  B O D Y  

A. L. Maksimenko and E. A. Olevskii UDC ~ 1 . 7 ~  

The term nonstationary problem in the work is used in the sense proposed in [1]. This pertains to the study of slow 

evolutionary processes of the deformation of a rigid-plastic medium. Some experience in solving such problems has been 
accumulated in the theory of plastic working of porous and powdered materials. The approaches developed in the theory of 
compressible plastic media make it possible to take a new look at the solution of classical problems of the theory of plasticity, 

considering an incompressible material as a material of an extremely low compressibility. The variational principles of the 

theory of plastic flow are used in this work to find the velocity fields. 
1. Distinctive Features of the Evolutionary Problems of the Theory of Plasticity. The simplest scheme for solving 

problems in which the evolution of the plastic deformation of a material during loading must be traced was presented, e.g., 

in [1]. If the flow pattern is to be explained, the load parameter must be changed by a step At, the instantaneous velocities must 
be found in the bulk of the material, changes in the flow geometry must be and hardening parameters must be traced, the 
velocities must be found again, and so forth. The main obstacles to the implementation of this approach stem from the fact that 

the velocity field in a rigid-plastic material is determined, generally speaking, in a nonunique manner. In numerical simulation 

this nonuniqueness manifests itself as incorrectness, i.e., small changes in the problem parameters result in large changes in 
the velocity field. For example, in the problem of the penetration of a die into a rigid-plastic homogeneous incompressible 
half-space an arbitrarily small variation of the yield point in the region adjacent to the die changes the velocity of the material 
abruptly. The velocity field symmetric relative to the die can, e.g., go over into an asymmetric field. A fair number of such 

examples was given in [2]. The incorrectness, in turn, entails indeterminacy in the choice of the step At. Of course, the faster 

the process, the smaller the step necessary for tracking its evolution. If the velocities change instantaneously, At should be zero. 
We arrive at this conclusion if we consider a rigid-plastic material as the limiting case of viscoplastic material. We give the 

rheological relations for a viscoplastic material in the form 

where Q is the viscoplastic potential; F is a function specifying the load surface; F 0 is a normalization factor; and the symbol 

0 denotes a step function of the form 

(u>= {0u for u <  0, 
for u>--0. 

For a viscoplastic material the time step should not exceed Atma x [4], 

4(1 + v)Y (1.1) 
At < Atm~ , - 3~E 

(E and ~' are Yotmg's modulus and Poisson's ratio of the material in the elastic state). An estimate was made a viscoplastic 
potential Q = F, 

Q = f Z r _  y, 

~ ( F / F o )  = F / Y ,  
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which corresponds to the Mises condition. For a plastic material the stresses are on the load surface (F = 0) and, therefore, 

for zero strain rates (3' = m and Atma x = 0). 
2. Influence of  Inclusion of  Irreversible Compressibility on the Distinctive Features  of  the Plastic Flow of  a 

Material .  A number of papers [5-8] that have appeared despite the difficulties use the above approach to simulate considerable 

plastic strains of  a material. The numerical results obtained in many technological problems agree qualitatively, and sometimes 

quantitatively, with experimental data. 
The above papers studied the irreversible deformation of compressible plastic media. The advantages gained by taking 

compressibility into account can easily be understood on the example of the problem of the plastic deformation of a panel. 
Finding the velocity field in this problem reduced to minimization of the functional [9] 

t I 1 , 2 1 
O = (u'x) 2 + ~ ( u )  + 2c2( y + u'~) 2 tadxdy - G(u,a) ,  

where L is the length of the panel; 2h is the thickness; x and y are dimensionless coordinates; u and v are the dimensionless 

components of the velocity vector; G(u, v) is a linear functional in u and v (dimensionless power of  the given forces acting 

on the panel); and the small parameter e = h/L. 
To within a factor the functional is an expression of the dissipative function for a material with the Mises plasticity 

condition and can be written as 
t l 

o = f f,f:Fd.~Jy - c ( , , , , , )  

0 - I  

('r is the second invariant of the deviator of  the strain-rate tensor). In the velocity field satisfying the Ki rchhoff -Love  

conditions and the incompressibility of the medium [9] 

u = Pouo(X) + P ~ C y ) u , ( x ) ,  
x y 

u = - r  u#)d ,~  - d.'oC.'OeoCY + l)  - : , , ' , ( x ) f  e # ) d a  
0 -1  

the functional becomes 
! ! 

fi = f f i,/7,1,,'oU'oCX) + e,u',Cx)l 
0 - 1  

- (q~ - ,~ + P,.',Cx))}dxa~" 

(Po and P1 are the first two polynomials orthonormalized on the segment [ -  1, 1] of the system of  Legendre polynomials). For 
any finite-dimensional approximation of the velocities the minimization of such a functional reduces to solving a set of  linear 

programming problems which are characterized by an incorrectness at certain values of the parameters. The incorrectness in 

the problems of finding the velocity field for plates of equal strength was noted in [10]. 
For a compressible material the velocity field can be written as [11] 

Jr 

u = PouoCx) + P,O,)u,Cx), u = - ~ ? o . f  u l C ' D d a  + :~,(x,y).  
0 

The dissipative potential in the model of  a compressible plastic medium, proposed by Shtern [12], has the form 

1 t 

D e = f f YIVT-S-O-O(~y 2 + v,.,e2)t~dxdy - G(u ,u) ,  (2.1) 
0 - 1  

where Y is a constant in the Mises flow condition for a nonporous material; and ~ and ~ are functions of  the porosity 

s,, = Cl  - o )  2, ~/, - 
2 C l - 0) 3 
3 e 

Further, if Y does not depend on the space coordinates, we assume these constants to be equal to unity. On substituting the 
expressions for the velocity, we obtain 

- ' " + g'Cu'o(X)P o + u ' l ( x ) P  1 + ~ y )  ] ladxdy - G. Do = f f -~ o[ ~,(U o(X)i o + u',(x)P~)' + ~,k oy ) 
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We can easily ascertain that for no values of # is the radicand a complete square and the functional does not have linear 

segments, i.e., the velocity field is always unique. The conclusion from the example considered above can be formulated as 

follows: Elimination of the linear condition of incompressibility and inclusion of the irreversible volume strain improves the 

properties of the functional and in many cases make it possible to obtain the correct formulation of the problem. 
3. Regularizat ion of  the Problem of Finding the Velocity Field for Transient  Processes. Unfortunately, an 

improvement such as described above, does not always occur since a functional of the form (2.1) (a specific range of integration 
in each specific case) is not strictly convex. Forms of deformation for which the velocity fields of  the compressed plastic 

medium are not unique are also possible. The simplest example is the problem of unidirectional compression of a multilayer 

workpiece in a cylindrical die without friction (Fig. 1). The velocities at the upper and lower ends of the workpieces u 0 and 
zero, respectively. If  we assume that all the layers are made of the same material and differ only as to porosity, the velocity 
distribution inside the material can be found by minimizing the functional 

o : E + : E y,. 

i = l  i=I 

Here N is the number of layers; V i is the volume of the i-th layer; e i and "Yi are, respectively, the first invariant of the strain- 
rate tensor and the second invariant of the deviator of that tensor. By u i we denote the dimensionless velocity of  the i-th layer 
interface (u o = - 1). The functional in terms of the velocity is written as 

i=I 

(S is the area of  the die cross section). The exact solution of the problem is found simply and the gist of  its sense is that only 

the layer with greatest porosity deforms. If the porosity of these layers is different, then 

ui = I"[ sign(0, - max 0) .  
j m l  i m l . N  

No unique velocity field in which a minimum is reached exists if the porosity of any two layers is the same. Figure 2 shows 

the D(ul) for a two-layer workpiece for 01 = 0.55, 02 = 0.5 (curve 1), 01 = 0.5, 02 = 0.5 (curve 2), and #1 = 0.45, #2 = 
0.5 (curve 3). Small changes in the porosity from the state #1 = 02 result in an abrupt change in velocity. In practical numerical 
simulation all u i take on values of 0 or - 1, since the equal-porosity condition is never realized exactly. In Other words, if we 
try to model the compaction of a homogeneous rod in a die by breaking it up layer by layer into elements, then the calculations 

are more accurate when we move away further from the actual velocity distribution, i.e., from uniform deformation of the 

entire rod. Henceforth we use MW to refer to the problem of compaction of a multilayer workpiece with layers of similar 
density. Remaining within the framework of the rigid-plastic model, we cannot avoid situations similar to those described 
above. The only way out is to regularize the problem by finding anew velocity field. 

The most common method of regularization is that of introducing physical viscosity [3, 8]. The time step and the 
coefficient of  viscosity are related by an equation of the type of (1.1). If  the properties of the material are close to those of a 

rigid-plastic material, the time step should be small; this sometimes does not accord with the physical essence of the problem, 
e.g., in the simulation of compression of a porous rod. In another approach, which is proposed below, numerical algorithms 
containing regularization parameters explicitly or implicitly are used to f'md the velocity field. 
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Essentially just such an algorithm was used in [5-8]. The velocity field was determined by a method which we call the 

method of viscous approximations. Its content is expounded most conveniently within the framework of  the variational 

approach. Not restricting the discussion to a rigid-plastic material, we consider a more general case for which the functional, 

reaching a minimum for the actual velocity field [13], has the form 

I f (I - O ) ~ W " d f 2  - G(u,v ,w) ,  W = (~/,e 2 + ~oy2)/(1 - O) (3.1) D = 2~-'~ 

(~b, ~a, a T are given functions of  the hardening parameters, 0.5 < c~ _< I). For a rigid-plastic material c~ = 0.5 and if r = 

co (0 = 0), we obtain a Mises material. We define D v as 

! w 
o. = - + (l - aa - 

(W 0 is the value of  W for given e 0 and 3'0). For all e, 3' we have 

O ~< D v. (3.2) 

The values of  the functionals D and D v coincides only for e = e 0, 3' = 3'0. The proof follows from the inequality 

~ 1 + a W o ,  

which was obtained by comparing the integrands in D and D v. The validity of the inequality is obvious because of  the convexity 

of the step fimction in the indicated range of o~. From Eq. (3.2) we have 

D(el,71 ) ~< min D v <~ D(eo,Yo), 

where D(e 1, 3'1) is the value of  the functional, calculated from the velocities, that minimizes the quadratic functional D v. The 

equal sign appears only at the minimum. Substituting the new values e 1, 3'1 instead of e0, 3"0 and repeating the procedure the 

required number of  times, we obtain an iteration process, which always converges to the desired new velocity field. A similar 

proof of the viscous approximations method can be constructed for any convex functional, in which case an inequality analogous 

to (3.2) follows from the properties of the subdifferential [13]. The functional D v is called the viscous approximation of the 

functional D. 
The condition of  practical convergence of the velocities obtained is used in [5-8] as a test that a minimum is reached. 

If  the properties of  the material are close to rigid-plastic (the functional is not strictly convex), it can be proved that an arbitrary 

small constant in the practical convergence condition of the viscous approximations method does not guarantee that the position 

of  the functional minimum can be determined with sufficient accuracy. At the same time, as was shown above in the MW 

problem, an exact solution may be uninformative because of the shortcomings of the model itself. The constant in the practical 

convergence condition, therefore, serves rather as a regularization parameter, which indicates how close the values of  the 

dissipative functionals of the rigid-plastic material considered should be at the end of  the iteration process to those of the 

equivalent viscous material, obtained by means of successive viscous approximations. A shortcoming of  such regularization 

is that the velocities obtained, have no comprehensible physical meaning since the iteration process with various initial 

approximations can give sharply differing results. 

A more promising approach is that of  constructing numerical algorithms in which information about the velocity field 

would be used not only at some given time t o but also over an entire interval [to, t o + At], at the time t o + At in the simplest 

case. With more c~)mplete information about the flow of the material the average velocities at time t 0. In a numerical analysis 

of  processes modeled by differential equations, the use of implicit schemes makes averaging possible. The model of 

rigid-plastic material contains no information about the evolutionary equations for the velocities. For deferential functionals 

they can be obtained by differentiating the pertinent Euler equations with respect to time. In our case this is impossible and, 

moreover, the very idea of  an implicit approach requires amendment. For example, we organize the following iteration process: 

from a given initial approximation of the velocity field and the initial values of the hardening parameters we determine the 

parameters of the material at time to + At, fred the value, and return to the beginning of  the process. As the average velocity 

field over the interval under consideration we take the velocity field to which the iteration process converges. This implicit 

approach turns out to have the disadvantage that velocities giving the exact solution of the problem of deformation of the 
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rigid-plastic material must be used. This is why the iteration process diverges, e.g., in the MW problem for which the sought 
velocity cannot be obtained by numerical analysis of the rigid-plastic model. 

It proved possible to construct an effective numerical method on the basis of a combination of the viscous 

approximations method and the use of implicit schemes. Its essence consists in the fact that an iteration process similar to that 

above is used for each viscous approximation and not for the limiting rigid-plastic material. We differentiate the functional 

Dr; for velocity fields minimizing this functional, we can obtain evolutionary equations, using ordinary numerical treatments 

to reduce them to a system of ordinary differential equations and then to solve those equations by means of the implicit 

schemes. In the simplest case, as already indicated, we can cord'me the discussion to the iteration procedure described above, 
successively going from one viscous approximation to another. If in the material At the velocity varied stably, the velocity 
obtained by the implicit method differs that u(to) and u(to + A0 by a value of the order of O(At). I f  the velocity varied unstably 

and changed by a finite value in the time At, the iteration process converges to the average velocity. This velocity field 
minimizes the quadratic functional, which on the one hand approximates the initial functional at the time t o + At and, on the 

other hand, cannot be improved at the time to without worsening the approximation at the time to + At. More exactly, for the 

velocity field found the change in velocity Au 0 in a step of the viscous approximation method at to is compensated with a given 

accuracy by a change in velocity Au I in a similar step of the viscous approximations method but at the time t o + At. The 
condition for stopping the iteration is 

[Au 0 + Au~l <e. 

If  the instantaneous velocities changed abruptly in the interval of time considered, then Au 0 and z&u 1 remain finite 
values even for arbitrarily small At. For the compaction of a two-layer work'piece the initial and approximating quadratic 
functional are represented schematically in Fig. 3. The time when the iteration process stops is shown. In the approach studied 
At is a regularization parameter and is chosen on the basis of physical ideas concerning the characteristic rates of change of 

the parameters. The rate at which the iterations converge is determined by the rates of  convergence of the viscous 

approximations method at the times to and to + At. If at to the method of viscous approximations converges slowly, the entire 
iteration process can converge rapidly because of the better convergence at to = At, and conversely. Generally speaking, the 
convergence of the iteration process is better when the time step is larger and D is more sensitive to the hardening parameters. 

As an example, we solve the problem of the penetration of a die into a r igid-plastic finite strip with a width equal 
to that of the die (plane deformation). All the contact surfaces are assumed to be absolutely smooth. The material of the strip 
is weakly compressed, with a uniformly distributed porosity of 0.001. The hardening law in Eq. (3. I) is given in the form 
usually taken for iron, 

dF 0 
t7 r = 140 + 50_0Fv2, M P a ; ~  = 

(P0 is an analog of the Odqvist parameter for a compressed plastic solid [12]). At the initial time F 0 = 0 in the entire volume. 

The constant in the practical convergence condition is e = 0.001. The region considered was divided into 126 finite elements, 
at whose sites 137 velocities were determined from the mimimum condition (3.1). The total number of iterations per step is 
30. Figure 4 shows isolines of  the field of  the quantity 

P ~ -- e r 
= 20--~ - a ,  a = 0.5 arctg 2 ' (3.3) 

P~y 
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where p is the pressure in the material, which was found from the formula [12] (this quantity was not determined for an 
incompressible material) 

(v, +_.7,/6)e/_._..._~ ax__+ % 
P '  "~" O'r v r ] - ~ " - - ~  ~/~O + !pe2/y 2' p -- 2 

We see that the isolines differ substantially from the family of slip lines for an ideal plastic material, the equation for which 
is (3.3). In particular, a large region of uniformly deformed material is formed beneath the die. This solution cannot be 
obtained if the velocity field is considered only at the initial time. In this case the functional should reach a minimum at the 
breaking velocity fields (Prandfl and Hill solutions [14]), which is impossible for a hardenable material [15]. 
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